How to prepare

[et_pb_section fb_built=”1″ admin_label=”Header & Contact Info” _builder_version=”4.25.1″ _module_preset=”default” background_enable_color=”off” collapsed=”on” global_colors_info=”{%22gcid-86e0e939-2c75-4117-936f-1ddaf39f4182%22:%91%22background_color%22%93}”][et_pb_row _builder_version=”4.22.0″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.22.0″ _module_preset=”default” global_colors_info=”{}”][et_pb_text _builder_version=”4.25.1″ _module_preset=”aeebe1bc-46f1-4721-991c-54f5a743b71a” header_font=”|700|||||||” global_colors_info=”{}”]

How To Prepare

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version=”4.27.4″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.27.4″ _module_preset=”default” global_colors_info=”{}”][et_pb_heading title=”How to prepare” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” global_colors_info=”{}” locked=”off”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” text_font_size=”16px” global_colors_info=”{}” locked=”off”]

Teams at the IOAI will be expected to have knowledge of the following areas of AI, programming languages, and frameworks. 

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ theme_builder_area=”post_content” _builder_version=”4.27.4″ _module_preset=”default”][et_pb_row column_structure=”1_2,1_2″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” locked=”off” theme_builder_area=”post_content”][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Python” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

Python is the main programming language used in the development of machine learning models. It is a high-level programming language, preferred by AI practitioners for its intuitive syntax and wide community support, among other things.

Check out a Python tutorial which uses Google Colab, an interactive computing platform, where you can execute Python code directly in a browser. Google Colab supports simple code like the one presented in the tutorial, as well as much more complex code for building and training machine learning models.

[/et_pb_text][et_pb_button button_url=”https://colab.research.google.com/github/Nyandwi/machine_learning_complete/blob/main/0_python_for_ml/intro_to_python.ipynb#scrollTo=9-vGtxIWCOEc” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”PyTorch” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

PyTorch is a widely used machine learning framework, based on Python. It provides high-level functionalities like building a machine learning model from pre-configured blocks, loading data from files of various formats, executing model training with just a few lines, and many more.

Notice that at the top of every tutorial page, there is a “Run in Google Colab” link that opens up the tutorial in Google Colab and allows you to interact with the code.

[/et_pb_text][et_pb_button button_url=”https://pytorch.org/tutorials/beginner/basics/intro.html” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row column_structure=”1_2,1_2″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” locked=”off” theme_builder_area=”post_content”][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Machine Learning” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

While AI has evolved a lot in recent years, the fundamental principles of machine learning remain unchanged, so this course from 2018 is still a great resource. Focus specifically on lectures 1 through 5 and 11 through 13.

[/et_pb_text][et_pb_button button_url=”https://www.youtube.com/watch?v=jGwO_UgTS7I&list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Deep Learning” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

Deep learning is what makes AI possible. This Coursera course from Andrew Ng and colleagues will give you the best introduction to the subject.
Once you’ve gained some skill with PyTorch (see below), also check out this interactive textbook on DL: https://d2l.ai/.

[/et_pb_text][et_pb_button button_url=”https://www.coursera.org/specializations/deep-learning” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row column_structure=”1_2,1_2″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” locked=”off” theme_builder_area=”post_content”][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Natural Language Processing” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

The “Speech and Language Processing” textbook by Dan Jurafsky and James H. Martin is the Bible of NLP. Focus on Part 1.

[/et_pb_text][et_pb_button button_url=”https://web.stanford.edu/~jurafsky/slp3/” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Word Embeddings” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

This is a practical implementation of the word2vec algorithm you learn about in Chapter 6 of the textbook above. Word embeddings are a prerequisite for any machine learning performed over text. Use this tutorial to better understand the concept of word embeddings, and the use of Pytorch and Google Colab for building and training machine learning models.

[/et_pb_text][et_pb_button button_url=”https://towardsdatascience.com/implementing-word2vec-in-pytorch-from-the-ground-up-c7fe5bf99889?gi=fab8ad64eb2a” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row column_structure=”1_2,1_2″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” locked=”off” theme_builder_area=”post_content”][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Transformers” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

The main model architecture used in both text and image processing these days is the transformer architecture. It revolutionized the field of NLP because it is highly parallelizable and in that way able to consume much larger amounts of data than was ever possible before.
The main Python library for working with this architecture is called transformers and many existing models using the architecture can be found in the HuggingFace.co hub.

[/et_pb_text][et_pb_button button_url=”https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Generative Modeling” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

Generative AI is what really caught the eye of the public and brought AI into production overnight. This repository by Andrej Karpathy is a great practical introduction to the workings of generative language models.

[/et_pb_text][et_pb_button button_url=”https://github.com/karpathy/minGPT” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row column_structure=”1_2,1_2″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” locked=”off” theme_builder_area=”post_content”][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Computer Vision” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

A course on deep learning for CV from 2015, good for getting a sense of the fundamentals in the field.

[/et_pb_text][et_pb_button button_url=”http://cs231n.stanford.edu/” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_2″ _builder_version=”4.23.3″ _module_preset=”default” custom_padding=”30px|10px|10px|10px|false|true” border_radii=”on|5px|5px|5px|5px” border_width_all=”2px” border_color_all=”#FFFFFF” border_style_all=”none” box_shadow_style=”preset3″ box_shadow_horizontal=”-2px” box_shadow_vertical=”6px” box_shadow_blur=”26px” box_shadow_spread=”-14px” box_shadow_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Recent Developments in CV” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” title_text_color=”#0C71C3″ global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][et_pb_text _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”]

The Deep Learning 1 course here covers key concepts in recent CV research like ResNet, adversarial attacks and the vision transformer.

[/et_pb_text][et_pb_button button_url=”https://uvadlc-notebooks.readthedocs.io/en/latest/index.html” button_text=”Try it” button_alignment=”right” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” locked=”off” theme_builder_area=”post_content”][et_pb_row _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_column type=”4_4″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_heading title=”Additional courses” _builder_version=”4.23.3″ _module_preset=”default” title_font=”|700|||||||” title_text_align=”center” locked=”off” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_heading][/et_pb_column][/et_pb_row][et_pb_row column_structure=”1_3,1_3,1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_column type=”1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”https://www.deeplearning.ai/courses/ai-for-everyone/” button_text=”AI for Everyone” button_alignment=”center” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”https://www.deeplearning.ai/courses/machine-learning-specialization/” button_text=”Machine Learning” button_alignment=”center” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”https://www.deeplearning.ai/courses/mathematics-for-machine-learning-and-data-science-specialization/” button_text=”Mathematics for Machine Learning” button_alignment=”center” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row column_structure=”1_3,1_3,1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_column type=”1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”https://www.deeplearning.ai/courses/natural-language-processing-specialization/” button_text=”Natural Language Processing” button_alignment=”center” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”https://www.deeplearning.ai/courses/deep-learning-specialization/” button_text=”Deep Learning” button_alignment=”center” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][et_pb_column type=”1_3″ _builder_version=”4.23.3″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”https://www.deeplearning.ai/courses/generative-ai-for-everyone/” button_text=”Generative AI” button_alignment=”center” _builder_version=”4.23.3″ _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#FFFFFF” button_bg_color=”#0C71C3″ button_border_width=”2px” button_border_color=”#FFFFFF” button_border_radius=”5px” button_letter_spacing=”0px” button_font=”|700|||||||” global_colors_info=”{}” theme_builder_area=”post_content”][/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Scroll to Top